हिंदी

Write a Value of ∫ Sin 2 X a 2 Sin 2 X + B 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]

योग

उत्तर

\[\text{ Let I} = \int \frac{\text{ sin   2x  dx}}{a^2 \sin^2 + b^2 \cos^2 x}\]
\[\text{ Let a}^2 \sin^2 x + b^2 \cos^2 x = t\]
\[ \Rightarrow \left[ a^2 \left( 2 \sin x \cos x \right) + b^2 \left( 2 \cos x \times - \sin x \right) \right]dx = dt\]
\[ \Rightarrow \left( a^2 - b^2 \right) \text{ sin 2x . dx} = dt\]
\[ \Rightarrow \text{ sin 2x dx }= \frac{dt}{a^2 - b^2}\]
\[ \therefore I = \frac{1}{a^2 - b^2}\int\frac{dt}{t}\]
\[ = \frac{1}{a^2 - b^2}\log t + C\]
\[ = \frac{1}{a^2 - b^2}\log \left(\text{  a} ^2 \sin^2 x + b^2 \cos^2 x \right) + C \left( \because t = a^2 \sin^2 x + b^2 \cos^2 x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Very Short Answers | Q 25 | पृष्ठ १९७

संबंधित प्रश्न

Integrate the functions:

`(log x)^2/x`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/(xsin^2(logx))  "d"x`


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×