हिंदी

Evaluate the following integrals : ∫e3x-e2xex+1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`

योग

उत्तर

Let I = `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`

= `int sqrt((e^(2x)(e^x - 1))/(e^x + 1)).dx`

= `int e^xsqrt((e^x - 1)/(e^x + 1)).dx`

Put ex = t

∴ ex dx = dt

∴ I = `int sqrt((t - 1)/(t + 1))dt`

= `int sqrt((t - 1)/(t + 1) xx (t - 1)/(t - 1))dt`

= `int sqrt(((t - 1)^2)/(t^2 - 1)dt`

= `int (t - 1)/sqrt(t^2 - 1)dt`

= `(1)/(2) int (2t)/sqrt(t^2 - 1)dt - int (1)/sqrt(t^2 - 1)dt`

= I1 – I 

In I1, put t2 – 1 = θ

∴ 2t dt = dθ

∴ I1 = `(1)/(2)int (dθ)/sqrt(θ)`

= `(1)/(2) int θ^(-1/2) dθ`

= `(1)/(2) (θ^(1/2))/((1/2)) + c_1`

= `sqrt(θ) + c_1`

= `sqrt(t^2 - 1) + c_1`

= `sqrt(e^(2x) - 1) + c_1`

and I2 = `int (1)/sqrt(t^2 - 1)dt`

= `log|t + sqrt(t^2 - 1)| + c_2`

= `log|e^x + sqrt(e^(2x) - 1)| + c_2`

∴ I = `sqrt(e^(2x) - 1) - log|e^x + sqrt(e^(2x) - 1) + c`, where c = c1 + c2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.9 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int 1/(x(x-1)) dx`


\[\int\sqrt{x - x^2} dx\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following : `int (logx)2.dx`


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int x/(x + 2)  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int sin^-1 x`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int secx/(secx - tanx)dx` equals ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int (1+x+x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×