Advertisements
Advertisements
प्रश्न
`int secx/(secx - tanx)dx` equals ______.
विकल्प
sec x – tan x + c
sec x + tan x + c
tan x + sec x + c
– (sec x + tan x) + c
उत्तर
`int secx/(secx - tanx)dx` equals tan x + sec x + c.
Explanation:
`int secx/(secx - tanx)dx = int (1/cosx)/(1/cosx - sinx/cosx)dx`
= `int dx/(1 - sin x)`
= `int 1/(1 - sinx) xx (1 + sin x)/(1 + sin x)dx`
= `int (1 + sinx)/(cos^2x)dx`
= `int sec^2 x dx + int tan x sec x dx`
= tan x + sec x + c.
APPEARS IN
संबंधित प्रश्न
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "x" * "e"^"2x"` dx
`int sin^-1 x`dx = ?
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(5x^2-6x+3)/(2x-3)dx`