हिंदी

Evaluate the following : ∫10+x10-x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`

योग

उत्तर

Let I = `int sqrt((10 + x)/(10 - x)).dx`

= `int sqrt((10 + x)/(10 - x) xx (10 + x)/(10 + x)).dx`

= `int (10 + x)/sqrt(100 - x^2).dx`

= `int (10)/sqrt(100 - x^2).dx + int x/sqrt(100 - x^2).dx`

= `10 int (1)/sqrt(10^2 - x^2).dx + (1)/(2) int (2x)/sqrt(100 - x^2).dx`

= I1 + I2                        ...(Let)

I1 = `10 int (1)/sqrt(10^2 - x^2).dx`

= `10 sin^-1 (x/10) + c_1`

In I2, put 100 – x2 = t
∴ – 2x dx =  dt
∴  2x dx = – dt

I2 = `-(1)/(2) int t^(-1/2) dt`

= `-(1)/(2).t^(1/2)/((1/2)) + c_2`

= `- sqrt(100 - x^2) + c_2`

I = `10 sin^-1 (x/10) - sqrt(100 - x^2) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.09 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int a^x e^x \text{ dx }\]


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int cos^2x.dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int sqrt(1 + sin2x)  "d"x`


`int cos^7 x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×