Advertisements
Advertisements
प्रश्न
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
उत्तर
Let I = `int sqrt((10 + x)/(10 - x)).dx`
= `int sqrt((10 + x)/(10 - x) xx (10 + x)/(10 + x)).dx`
= `int (10 + x)/sqrt(100 - x^2).dx`
= `int (10)/sqrt(100 - x^2).dx + int x/sqrt(100 - x^2).dx`
= `10 int (1)/sqrt(10^2 - x^2).dx + (1)/(2) int (2x)/sqrt(100 - x^2).dx`
= I1 + I2 ...(Let)
I1 = `10 int (1)/sqrt(10^2 - x^2).dx`
= `10 sin^-1 (x/10) + c_1`
In I2, put 100 – x2 = t
∴ – 2x dx = dt
∴ 2x dx = – dt
I2 = `-(1)/(2) int t^(-1/2) dt`
= `-(1)/(2).t^(1/2)/((1/2)) + c_2`
= `- sqrt(100 - x^2) + c_2`
I = `10 sin^-1 (x/10) - sqrt(100 - x^2) + c`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int sqrt(1 + sin2x) "d"x`
`int cos^7 x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sin^-1 x`dx = ?
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int dx/(1 + e^-x)` = ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`