Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(log x)^2/x`
उत्तर
Let `I = int (log x)^2/x` dx
Put log x = t
`1/x` dx = dt
Hence, `I = int t^2` dt
`I = t^3/3 + C`
`I = 1/3 (log x)^3 + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :`intxlogxdx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Evaluate the following : `int (logx)2.dx`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: ∫ |x| dx if x < 0
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(1 + sin2x) "d"x`
`int x^x (1 + logx) "d"x`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`