हिंदी

Evaluate the following : ∫(logx)2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (logx)2.dx`

योग

उत्तर

Let I = `int (logx)^2.dx`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int t^2e^t dt`

= `t^2 int e^t dt - int [d/dx(t^2) int e^t - dt]dt`

= `t^2e^t - int 2te^t dt`

= `t^2e^t - 2[t int e^t dt - int {d/dt (t) int e^t dt}dt]`

= `t^2e^t - 2[te^t - int 1.e^t dt]`
= `t^2e^t - 2te^t + 2e^t + c`
= `e^t[t^2 - 2t + 2] + c`
= x[(log x)2 – 2(log x) + 2] + c.
Alternative Method :
Let I = `int (logx)^2.dx`

= `int (logx)^2. 1dx`

= `(logx)^2 int1.dx - int[d/dx (logx)^2.int1.dx].dx`

= `(logx)^2.x - int 2logx.d/dx(logx).xdx`

= `x(logx)^2 - int 2logx xx 1/x xx x.dx`

= `x(logx)^2 - 2 int (logx).1dx`

= `x(logx)2 - 2[(logx) int 1.dx - int {d/dx (logx) int 1.dx}.dx]`

= `x(logx)^2 - 2[(logx)x - int1/x xx x.dx`

= `x(logx) - 2x(logx) + 2 int 1.dx`

= `x(logx)^2 - 2x(logx) + 2x + c`

= `x[(logx)^2 - 2(logx) + 2] + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 1.06 | पृष्ठ १३७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Solve: dy/dx = cos(x + y)


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


`int 1/(cos x - sin x)` dx = _______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×