Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (logx)2.dx`
उत्तर
Let I = `int (logx)^2.dx`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int t^2e^t dt`
= `t^2 int e^t dt - int [d/dx(t^2) int e^t - dt]dt`
= `t^2e^t - int 2te^t dt`
= `t^2e^t - 2[t int e^t dt - int {d/dt (t) int e^t dt}dt]`
= `t^2e^t - 2[te^t - int 1.e^t dt]`
= `t^2e^t - 2te^t + 2e^t + c`
= `e^t[t^2 - 2t + 2] + c`
= x[(log x)2 – 2(log x) + 2] + c.
Alternative Method :
Let I = `int (logx)^2.dx`
= `int (logx)^2. 1dx`
= `(logx)^2 int1.dx - int[d/dx (logx)^2.int1.dx].dx`
= `(logx)^2.x - int 2logx.d/dx(logx).xdx`
= `x(logx)^2 - int 2logx xx 1/x xx x.dx`
= `x(logx)^2 - 2 int (logx).1dx`
= `x(logx)2 - 2[(logx) int 1.dx - int {d/dx (logx) int 1.dx}.dx]`
= `x(logx)^2 - 2[(logx)x - int1/x xx x.dx`
= `x(logx) - 2x(logx) + 2 int 1.dx`
= `x(logx)^2 - 2x(logx) + 2x + c`
= `x[(logx)^2 - 2(logx) + 2] + c`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Solve: dy/dx = cos(x + y)
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int sin^-1 x`dx = ?
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1)) dx`