Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : sin4x.cos3x
उत्तर
Let I = `int sin^4x.cos^3x dx`
= `int sin^4x.cos^2x.cos x dx`
= `int sin^4x (1 - sin^2x) cos x dx`
Put sin x = t
∴ cos x dx = dt
∴ I = `int t^4(1 - t^2)dt`
= `int (t^4 - t^6)dt`
= `int t^4 dt - int t^6 dt`
= `t^5/(5) - t^7/(7) + c`
= `(1)/(5)sin^5x - (1)/(7)sin^7 x + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int 1/(xsin^2(logx)) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (cos2x)/(sin^2x) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`