Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : sin5x.cos8x
उत्तर
Let I = `int sin^5xcos^8xdx`
=`int sin^4xcos^8xsinxdx`
= `int(1 - cos^2x)^2 cos^8xsinxdx`
Put cos x = t
∴ – sin x dx = dt
∴ sin x dx = – dt
I = `- int(1 - t^2)^2t^8 dt`
= `- int(1 - 2t^2 + t^4)t^8 dt`
= `- int (t^8 - 2t^10 + t^12)dt`
= `- int t^8dt + 2 intt^10 dt - int t^12 dt`
= `- t^9/(9) + 2(t^11/11) - t^13/(13) + c`
= `-(1)/(9)cos^9x + (2)/(11)cos^11x - (1)/(13)cos^13x + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`(1+ log x)^2/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : cos7x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int "e"^sqrt"x"` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int 1/(xsin^2(logx)) "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int sec^6 x tan x "d"x` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int x^3 e^(x^2) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`