Advertisements
Advertisements
प्रश्न
`int (log x)/(log ex)^2` dx = _________
विकल्प
x (1 + log x) + c
`x/(1 + log x) + "c"`
`1/(1 + log x) + "c"`
`1/(1 - log x) + "c"`
उत्तर
`x/(1 + log x) + "c"`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following : `int (logx)2.dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`