Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
उत्तर
Let I = `int cosx/sin(x - a).dx`
= `int cos[(x - a) + a]/sin(x - a).dx`
= `int[cos(x - a)cos a - sin(x - a)sin a)/sin(x - a).dx`
= `int [(cos(x - a)cos a)/sin(x - a) - (sin(x - a)sina)/sin(x - a)].dx`
= `cos a int cot (x - a)dx - sin a int 1 dx`
= cos a log |sin(x – a)| – x sin a + c.
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 1/(cos x - sin x)` dx = _______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cos sqrtx` dx = _____________
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`