हिंदी

Integrate the following functions w.r.t. x : cosxsin(x-a) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `cosx/sin(x - a)`

योग

उत्तर

Let I = `int cosx/sin(x - a).dx`

= `int cos[(x - a) + a]/sin(x - a).dx`

= `int[cos(x - a)cos a - sin(x - a)sin a)/sin(x - a).dx`

= `int [(cos(x - a)cos a)/sin(x - a) - (sin(x - a)sina)/sin(x - a)].dx`

= `cos a int cot (x - a)dx - sin a int 1 dx`

= cos a log |sin(x – a)| – x sin a + c.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 2.02 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/(cos x - sin x)` dx = _______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int cos sqrtx` dx = _____________


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×