Advertisements
Advertisements
प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
उत्तर
`I=int(sqrt(cotx)+sqrt(tanx))dx`
`=int(sqrt(tanx)(1+cotx))dx`
`Let tanx=t^2`
Differentiating both sides w.r.t. x, we get
`sec^2 x dx=2t dt`
`=> dx=(2tdt)/(1+t^4)`
`therefore I=intt(1+1/t^2)xx(2t)/(1+t^4)dt`
`=2int(t^2+1)/(t^4+1)dt`
`=2int(1+1/t^2)/(t^2+1/t^2)dt`
`=2int(1+1/t^2)/((t-1/t)^2+2)dt`
`Let (t−1)/t=y`
`=>(1+1/t^2)dt=dy`
`therefore I=2int 1/(y^2+(sqrt2)^2) dy`
`=2xx1/sqrt2 tan^-1(y/sqrt2)+C`
`=sqrt2 tan^-1 (t-1/t)/sqrt2+C`
`=sqrt2 tan^-1 ((t^2-1)/(sqrt2t))+C`
`=sqrt2 tan^-1((tanx-1)/sqrt(2tanx))+C`
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Write a value of
Write a value of\[\int \log_e x\ dx\].
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int logx/x "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int sqrt(x^2 - a^2)/x dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`