Advertisements
Advertisements
प्रश्न
Write a value of\[\int \log_e x\ dx\].
उत्तर
= x loge x – x + C
= x (loge x – 1) + C
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int cos sqrtx` dx = _____________
`int (log x)/(log ex)^2` dx = _________
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`