Advertisements
Advertisements
प्रश्न
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
उत्तर
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + 2
Explanation:
f(x) = ∫f '(x) dx
`= int (1/"x" + "x")` dx
f(x) = log |x| + `"x"^2/2 + "c"` ...(i)
f(1) = `5/2`
f(1) = log 1 + `1^2/2` + c
∴ `5/2 = 0 + 1/2 + "c"` ...(∵ log 1 = 0)
∴ c = `5/2 - 1/2`
∴ = `4/2` = 2
∴ c = 2
∴ f(x) = log |x| + `"x"^2/2` + 2
Notes
The answer in the textbook is incorrect.
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int cot^2x "d"x`
`int sec^6 x tan x "d"x` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`