Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
उत्तर
Let I = `int (1)/(3 + 2sin x - cosx)dx`
Put `tan(x/2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2)/(1 + t^2)dt` and
sinx = `(2t)/(1 + t^2)' cosx = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(3 + 2((2t)/(1 + t^2)) - ((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`
= `int (1 + t^2)/(3(1 + t^2) + 4t - (1 - t^2)).(2dt)/(1 + t^2)`
= `2 int dt/(4t^2 + 4t + 2)`
= `2 int dt/(4t^2 + 4t + 1 + 1)`
= `2 int dt/((2t + 1)^2 + 1^2)`
= `(2)/(2)tan^-1((2t + 1)/1) + c`
= `tan^-1[2tan^-1(x/2) + 1] + c`.
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`1/(1 + cot x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int 1/((2"x" + 3))` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int cot^2x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int sin^-1 x`dx = ?
`int dx/(1 + e^-x)` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`