हिंदी

Integrate the following functions w.r.t. x : ∫14-5cosx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`

योग

उत्तर

Let I = `int (1)/(4 - 5cosx).dx`

Put `tan(x/2)` = t
∴ x = 2 tan–1 t

∴ dx = `(2dt)/(1 + t^2) and cosx = (1 - t^2)/(1 + t^2)`

∴ I = `int (1)/(4 - 5((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`

= `int (1 + t^2)/(4(1 + t^2) - 5(1 - t^2)).(2dt)/(1 + t^2)`

= `int (2dt)/(9t^2 - 1)`

= `(2)/(9) int (1)/(t^2 - 1/9)dt`

= `(2)/(9) int (1)/(t^2 - (1/3)^2)dt`

= `(2)/(9) xx (1)/(2 xx 1/3) log|(t - 1/3)/(t + 1/3)| + c`

= `(1)/(3) log |(3tan(x/2) - 1)/(3tan (x/2) + 1)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.2 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int 1/(x(x-1)) dx`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×