Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
उत्तर
Let I = `int (1)/(4 - 5cosx).dx`
Put `tan(x/2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t^2) and cosx = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(4 - 5((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`
= `int (1 + t^2)/(4(1 + t^2) - 5(1 - t^2)).(2dt)/(1 + t^2)`
= `int (2dt)/(9t^2 - 1)`
= `(2)/(9) int (1)/(t^2 - 1/9)dt`
= `(2)/(9) int (1)/(t^2 - (1/3)^2)dt`
= `(2)/(9) xx (1)/(2 xx 1/3) log|(t - 1/3)/(t + 1/3)| + c`
= `(1)/(3) log |(3tan(x/2) - 1)/(3tan (x/2) + 1)| + c`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`