हिंदी

Integrate the functions: 11+cotx - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the functions:

`1/(1 + cot x)`

योग

उत्तर

Let `I = int 1/ (1 + cot x) dx = int 1/ (1 + cos x/sinx) dx`

`= int sin/(sin x + cos x) dx`

`= 1/2 int (2 sin x)/ (sinx + cos x) dx`

`= 1/2 int ((sin x +  cos x) - (cos x - sin x))/ ((sin x + cos x)) dx`

`= 1/2 int 1 dx - 1/2 int (cos x - sin x)/ (sin x + cos x) dx`

`= 1/2 x - 1/2 int (cos x - sin x)/ (sin x +  cos x) dx + C_1`

`I = x/2 - 1/2 I_1 + C_1`                  ........(i)

Where, `I_1 = int (cos x - sin x)/ (sin x +  cos x) dx`

Put sin x +  cos x = t 

⇒ (cos x - sin x) dx = dt

⇒ `I_1 = int dt/t = log |t| + C_2`

`= log |cos x + sin x| + C_2`              ......(ii)

From (i) and (ii), we get

⇒ `I = 1/2 x - 1/2 log |cos x + sin x| + C` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.2 [पृष्ठ ३०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.2 | Q 32 | पृष्ठ ३०५

संबंधित प्रश्न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int "x" * "e"^"2x"` dx


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int1/(4 + 3cos^2x)dx` = ______ 


`int (f^'(x))/(f(x))dx` = ______ + c.


`int 1/(sinx.cos^2x)dx` = ______.


`int (logx)^2/x dx` = ______.


`int secx/(secx - tanx)dx` equals ______.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×