हिंदी

Choose the correct options from the given alternatives : ∫dxcosxsin2x-cos2x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =

विकल्प

  • `log(tanx - sqrt(tan^2x - 1)) + c`

  • sin–1 (tan x) + c

  • 1 + sin–1 (cot x) + c

  • `log(tanx + sqrt(tan^2x - 1)) + c`

MCQ

उत्तर

`log(tanx + sqrt(tan^2x - 1)) + c`

[ Hint : `int dx/(cosxsqrt(sin^2x - cos^2x)`

= `int (sec2x*dx)/sqrt(tan2x - 1)`     ...[Dividing by cos2x]
Put tan x = t].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.16 | पृष्ठ १४९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Evaluate: `int 1/(x(x-1)) dx`


\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "e"^sqrt"x"` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int logx/x  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int cos^7 x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int x^3"e"^(x^2) "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×