हिंदी

Write a Value of ∫ E a X Cos B X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 

योग

उत्तर

\[\text{ Let I }= \int e^{ax} . \text{ cos bx dx }\]
\[ = \cos bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} - \int - \sin bx \times b . \frac{e^{ax}}{a}\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a}\int e^{ax} . \text{ sin bx dx }\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \text{ sin  bxdx}\]
\[ = \sin bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax}\text{  dx }\right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int b . \cos bx \times \frac{e^{ax}}{a}dx\]
\[ = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{  From} \left( 1 \right) \text{ and }\left( 2 \right)\]
\[ \therefore I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a} \left\{ \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a^2} \text{ sin  bx  e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \cos bx . \frac{e^{ax}}{a} + \frac{b \text{ sin  bx  e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \cos bx + b \sin bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \cos bx + b\sin bx \right) e^{ax}}{a^2 + b^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Very Short Answers | Q 32 | पृष्ठ १९७

संबंधित प्रश्न

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`(1+ log x)^2/x`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int (logx)^2/x dx` = ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


`int x^3 e^(x^2) dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×