Advertisements
Advertisements
प्रश्न
Integrate the functions:
`x/(e^(x^2))`
उत्तर
Let `I = int x/ (e^(x^(2))) dx`
Put x2 = t
⇒ 2x dx = dt
∴ `I = 1/2 int dt/e^t`
`= 1/2 int e^-t dt`
`= 1/2 (e^-t/-1) + C`
`= -1/(2e^t) + C`
`= -1/ 2^(e^(x^2)) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int (7x + 9)^13 "d"x` ______ + c
`int (cos x)/(1 - sin x) "dx" =` ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int secx/(secx - tanx)dx` equals ______.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`