Advertisements
Advertisements
Question
Integrate the functions:
`x/(e^(x^2))`
Solution
Let `I = int x/ (e^(x^(2))) dx`
Put x2 = t
⇒ 2x dx = dt
∴ `I = 1/2 int dt/e^t`
`= 1/2 int e^-t dt`
`= 1/2 (e^-t/-1) + C`
`= -1/(2e^t) + C`
`= -1/ 2^(e^(x^2)) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
cot x log sin x
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int secx/(secx - tanx)dx` equals ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int 1/(x(x-1)) dx`