Advertisements
Advertisements
Question
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Solution
Let `x^(3/2)` = t
`\implies` dt = `3/2 x^(1/2) dx`
`int sqrt(x/(1 - x^3))dx = 2/3 int dt/sqrt(1 - t^2)`
= `2/3 sin^-1 (t) + c`
= `2/3 sin^-1 (x^(3/2)) + c`, where 'c' is an arbitrary constant of integration.
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
`int x^3 e^(x^2) dx`