Advertisements
Advertisements
Question
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Solution
Let I = `int (1 + "x")/("x" + "e"^"-x")` dx
`= int (1 + "x")/("x" + 1/"e"^"x")` dx
`= int (1 + "x")/(("x" * "e"^"x" + 1)/"e"^"x")`dx
`= int ("e"^"x"(1 + "x"))/("x" * "e"^"x" + 1)` dx
Put `"x" * "e"^"x" + 1 = "t"`
∴ `["x" * ("e"^"x") + "e"^"x" (1) + 0]`dx = dt
∴ `"e"^"x" ("x" + 1)`dx = dt
∴ I = `int "dt"/"t"`
= log |t| + c
∴ I = log `|"x" * "e"^"x" + 1|` + c
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`1/(1 + cot x)`
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
`int sqrt(1 + "x"^2) "dx"` =
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int (logx)^2/x dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int 1/(x(x-1)) dx`