Advertisements
Advertisements
Question
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Options
`e^x/x + c`
`e^x/x^2 + c`
`(x - 1/x)e^x + c`
`xe^-x + c`
Solution
`e^x/x + c`
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
`int logx/(log ex)^2*dx` = ______.
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int cos^7 x "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int cos^3x dx` = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`