English

Choose the correct options from the given alternatives : ∫ex(x-1)x2⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =

Options

  • `e^x/x + c`

  • `e^x/x^2 + c`

  • `(x - 1/x)e^x + c`

  • `xe^-x + c`

MCQ

Solution

`e^x/x + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 149]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.11 | Page 149

RELATED QUESTIONS

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


`int logx/(log ex)^2*dx` = ______.


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int cos^7 x  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int cos^3x  dx` = ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×