Advertisements
Advertisements
Question
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Solution
Let `I = int (e^(2x) - 1)/(e^(2x) + 1)` dx
On dividing the numerator and denominator by ex
`= int (e^x - e^(-x))/(e^x + e^(-x))` dx
Put ex + e-x = t
Then, ex - e-x dx = dt
Hence, `I = int 1/t` dt
= log t + C
= log (ex + e-x) + C
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int(log(logx))/x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`