English

Evaluate the following : ∫13x2-8.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`

Sum

Solution

`int (1)/sqrt(3x^2 + 8).dx`

= `(1)/sqrt(3) int (1)/sqrt(x^2 + 8/3).dx`

= `(1)/sqrt(3) int (1)/sqrt(x^2 + (sqrt(8/3))^2).dx`

= `(1)/sqrt(3) log |x + sqrt(x^2 + (sqrt(8/3))^2)| + c_1`

= `(1)/sqrt(3) log |x + sqrt(x^2 + 8/3)| + c_1`

= `(1)/sqrt(3) log |(sqrt(3)x + sqrt(3x^2 + 8))/sqrt(3)| + c_1`

= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)|  - logsqrt(3) + c_1`

= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| + c, "where"  c = c_1 - logsqrt(3)`

Alternative Method :

`int (1)/sqrt(3x^2 + 8).dx`

= `int (1)/sqrt((sqrt(3)x)^2 + (sqrt(8))^2).dx`

= `(log|sqrt(3)x + sqrt((sqrt(3)x)^2 + sqrt((8))^2| + c))/sqrt(3)`

= `(1)/sqrt(3) log |sqrt(3)x + sqrt(3x^2 + 8)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `int cos^2x.dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int sqrt(1 + "x"^2) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "e"^sqrt"x"` dx


`int cos sqrtx` dx = _____________


`int sqrt(1 + sin2x)  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×