Advertisements
Advertisements
Question
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Solution
f '(x) = `"x"^2/2 - "kx" + 1` ...[Given]
f(x) = ∫ f '(x) dx
`= int ("x"^2/2 - "kx" + 1)`dx
`= 1/2 int "x"^2 "dx" - "k" int "x" "dx" + int 1 * "dx"`
`= 1/2 * "x"^3/3 - "k" ("x"^2/2) + "x" + "c"`
∴ f(x) = `"x"^3/6 - "k"/2 "x"^2 + "x" + "c"` ...(i)
Now, f(0) = 2
∴ `(0)^3/6 - "k"/2 (0)^2 + 0 + "c"` = 2
∴ c = 2 ...(ii)
Also f(3) = 5 ...[Given]
∴ `(3)^3/6 - "k"/2 (3)^2 + 3 + 2 = 5`
∴ `27/6 - "9k"/2 + 5 = 5`
∴ `9/2 - "9k"/2 = 0`
∴ `"9k"/2 = 9/2`
∴ k = 1 ....(iii)
Substituting (ii) and (iii) in (i), we get
f(x) = `"x"^3/6 - "x"^2/2 + "x" + 2`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`1/(1 + cot x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int cos^7 x "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).