English

Integrate the functions: x1+2x2 - Mathematics

Advertisements
Advertisements

Question

Integrate the functions:

`xsqrt(1+ 2x^2)`

Sum

Solution

Let `I = int x sqrt(1 + 2x^2)` dx

Taking 1 + 2x2 = t 

4x dx = dt

or x dx `= 1/4` dt

Hence, `I = int 1/4  t^(1/2)  dt = 1/4 int t^(1/2)` dt

`= 1/4 . 2/3  t^(3/2) + C`

`= 1/6 (1 + 2x^2)^(3/2) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 304]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 8 | Page 304

RELATED QUESTIONS

Integrate the functions:

`(2x)/(1 + x^2)`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int(log(logx))/x  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int (logx)^2/x dx` = ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×