Advertisements
Advertisements
Question
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Solution
`int (3 sec^2 x - 4/x + 1/(xsqrt(x)) - 7)dx`
= `3int sec^2x dx - 4 int 1/x dx + intx ^(-(3)/(2)) dx - 7 int 1 dx`
= `3 tan x - 4 log |x| + (x ^(- 3/2 + 1))/(-3/2 + 1) - 7x + c`
= `3 tan x - 4 log |x| + (x ^(- 1/2 ))/(-1/2) - 7x + c`
= `3 tan x - 4 log |x| + (-2x^(-1/2)) - 7x + c`
= `3tan x - 4 log |x| - 2/sqrt(x) - 7x + c`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int (7x + 9)^13 "d"x` ______ + c
`int x^3"e"^(x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int cos^3x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/(x(x-1))dx`