English

Choose the correct option from the given alternatives : ∫1+x+x+x2x+1+x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =

Options

  • `(1)/(2)sqrt(x + 1) + c`

  • `(2)/(3)(x + 1)^(3/2) + c`

  • `sqrt(x + 1) + c`

  • `2(x - 1)^(3/2) + c`

MCQ

Solution

`(2)/(3)(x + 1)^(3/2) + c`

Explanation:

`I = int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` 

I = `int sqrt((1+x)^2+ sqrtx *sqrt(1+ x) )/ (sqrt(x) + sqrt(1+x))*dx`

I  = `int( sqrt(1 + x) sqrt(1 + x) + sqrtx )/ (sqrt(x)+sqrt(1 + x))*dx`

I `= int(sqrt(1+x)) dx = 2/3 (x + 1)^(3/2) + c`

I = `(2)/(3)(x + 1)^(3/2) + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 148]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.01 | Page 148

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`int (dx)/(sin^2 x cos^2 x)` equals:


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int (log x)/(log ex)^2` dx = _________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int(5x + 2)/(3x - 4) dx` = ______


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int1/(4 + 3cos^2x)dx` = ______ 


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int x^2/sqrt(1 - x^6)dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×