Advertisements
Advertisements
Question
Solution
\[\text{ Let I} = \int \cos x \sqrt{4 - \sin^2 x}\text{ dx}\]
\[\text{ Putting sin x} = t\]
\[ \Rightarrow \cos\ x\ dx = \text{ dt }\]
\[\int \sqrt{2^2 - t^2} \text{ dt }\]
\[ = \frac{t}{2}\sqrt{2^2 - t^2} + \frac{2^2}{2} \text{ sin}^{- 1} \left( \frac{t}{2} \right) + C \left[ \because \int\sqrt{a^2 - x^2} \text{ dx } = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{\sin x}{2} \sqrt{4 - \sin^2 x} + 2 \sin^{- 1} \left( \frac{\sin x}{2} \right) + C \left[ \because t = \sin x \right]\]
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int cot^2x "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int "cosec"^4x dx` = ______.
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`