Advertisements
Advertisements
Question
Write a value of
Solution
\[\text{ Let I }= \int \left( e^{2 x^2 + \ln x} \right)dx\]
\[ = \int \left( e^{2 x^2} \times e^{ \text{ ln x}} \right)dx\]
\[ = \int e^{2 x^2} . x \text{ dx}\]
\[\text{ Let 2}\ x^2 = t\]
\[ \Rightarrow \text{ 4x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int e^t dt\]
\[ = \frac{1}{4} e^t + C\]
\[ = \frac{1}{4} e^{2 x^2} + C \left( \because t = 2 x^2 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int log ("x"^2 + "x")` dx
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`