Advertisements
Advertisements
Question
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Options
True
False
Solution
False
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int (log x)/(log ex)^2` dx = _________
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int 1/("x"("x" - 1)) "dx"`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).