Advertisements
Advertisements
Question
Integrate the functions:
sin (ax + b) cos (ax + b)
Solution
Let `I = int sin (ax + b) cos (ax + b) dx`
Put sin (ax + b) = t
⇒ a cos (ax + b) dx = dt
∴ `I = 1/a int t dt = 1/a * t^2/2 + C`
`= 1/(2a) t^2 + C`
`= 1/ (2a) sin^2 (ax + b) + C`
Or, put cos (ax + b) = t
⇒ -a sin (ax + b) dx = dt
∴ `I = (-1)/a int dt = (-1)/a t^2/2 + C`
`= (-cos^2 (ax + b))/(2a) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(x + x log x)`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (cos2x)/(sin^2x) "d"x`
`int cot^2x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`