Advertisements
Advertisements
Question
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Solution
Let I = `int "x"^5/("x"^2 + 1)`dx
`int (("x"^2)^2 * "x")/("x"^2 + 1)`dx
Put x2 + 1 = t
∴ 2x . dx = dt
∴ x . dx = `1/2 * "dt"`
Also, x2 = t - 1
∴ I = `int ("t" - 1)^2/"t" * 1/2`dt
`= 1/2 int ("t"^2 - 2"t" + 1)/"t"`dt
`= 1/2 int ("t" - 2 + 1/"t")`dt
`= 1/2 ["t"^2/2 - 2"t" + log |"t"|]` + c
`= 1/4 "t"^2 - "t" + 1/2 log |"t"| + "c"`
∴ I = `1/4 ("x"^2 + 1)^2 - ("x"^2 + 1) + 1/2 log |"x"^2 + 1|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int(5x + 2)/(3x - 4) dx` = ______
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
`int x^3 e^(x^2) dx`
Evaluate `int 1/(x(x-1))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.