Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Solution
Let I = `int 1/(sqrt(3"x"^2 - 5))` dx
`= 1/sqrt3 int 1/sqrt("x"^2 - 5/3)` dx
`= 1/sqrt3 int 1/(sqrt ("x"^2 - (sqrt5/sqrt3)^2))` dx
`= 1/sqrt3 log |"x" + sqrt("x"^2 - (sqrt5/sqrt3)^2)| + "c"_1`
`= 1/sqrt3 log |"x" + sqrt("x"^2 - 5/3)| + "c"_1`
`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 - 5))/sqrt3| + "c"_1`
`= 1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| - 1/sqrt3 log sqrt3 + "c"_1`
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 - 5)| + "c"`,
where c = `"c"_1 - 1/sqrt3 log sqrt3`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int sin^-1 x`dx = ?
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`