Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Solution
Let I = `int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`= int 1/sqrt("x"^2 + 2 * 2"x" + 4 - 4 + 29)` dx
`= int 1/(sqrt(("x + 2")^2 + 25)` dx
`= int "dx"/(sqrt(("x + 2")^2 + 5^2)`
`= log |("x + 2") + sqrt(("x + 2")^2 + 5^2)|`+ c
∴ I = `= log |("x + 2") + sqrt("x"^2 + "4x" + 29)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Write a value of
Write a value of
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
`int(5x + 2)/(3x - 4) dx` = ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`