Advertisements
Advertisements
Question
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Solution
Let I = `int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Let 2ex + 5 = A(2ex + 1) + B `"d"/"dx"`(2ex + 1)
= 2 Aex + A + B(2ex )
∴ 2ex + 5 = (2A + 2B)ex + A
Comparing the coefficients of ex and constant term on both sides, we get
2A + 2B = 2 and A = 5
Solving these equations, we get
B = - 4
∴ I = `int (5(2"e"^"x" + 1) - 4(2"e"^"x"))/(2"e"^"x" + 1)`dx
`= 5 int "dx" - 4 int (2"e"^"x")/(2"e"^"x" + 1)`dx
∴ I = 5x - 4 log `|2"e"^"x" + 1|` + c ....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
cot x log sin x
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int (cos x)/(1 - sin x) "dx" =` ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`