Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
उत्तर
Let I = `int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Let 2ex + 5 = A(2ex + 1) + B `"d"/"dx"`(2ex + 1)
= 2 Aex + A + B(2ex )
∴ 2ex + 5 = (2A + 2B)ex + A
Comparing the coefficients of ex and constant term on both sides, we get
2A + 2B = 2 and A = 5
Solving these equations, we get
B = - 4
∴ I = `int (5(2"e"^"x" + 1) - 4(2"e"^"x"))/(2"e"^"x" + 1)`dx
`= 5 int "dx" - 4 int (2"e"^"x")/(2"e"^"x" + 1)`dx
∴ I = 5x - 4 log `|2"e"^"x" + 1|` + c ....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(x + x log x)`
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
`int cos sqrtx` dx = _____________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int cot^2x "d"x`
`int (7x + 9)^13 "d"x` ______ + c
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Write `int cotx dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`