हिंदी

∫cot2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int cot^2x  "d"x`

योग

उत्तर

`int cot^2x  "d"x = int("cosec"^2x - 1)  "d"x`

= −cot x − x + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find `intsqrtx/sqrt(a^3-x^3)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

cot x log sin x


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int x^3"e"^(x^2) "d"x`


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int (logx)^2/x dx` = ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int x^3 e^(x^2) dx`


`int "cosec"^4x  dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×