Advertisements
Advertisements
प्रश्न
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
उत्तर
\[\text{ Let I }= \int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)dx\]
\[\text{ As we know that }\int e^{x} \left\{ f\left( x \right) + f'\left( x \right) \right\}dx = e^x f\left( x \right) + C\]
\[ \therefore I = \frac{e^x}{x} + C\]
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
cot x log sin x
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (cos2x)/(sin^2x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`