हिंदी

Find ∫((3sinθ−2)cosθ)/(5−cos2θ−4sinθ)dθ - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`

उत्तर

Let I = `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`

`=>I=int((3sintheta-2)costheta)/(5-(1-sin^2theta)-4sintheta)d theta`

`=>I=int((3sintheta-2)costheta)/(sin^2theta-4sin theta+4)d theta`

Now, let sin θ=t.

⇒ cos θ dθ=dt

`:.I=int(3t-2)/(t^2-4t+4)`

`=>3t-2=Ad/dx(t^2-4t+4)+B`

`=>3t-2=A(2t-4)+B`

`=>3t-2=(2A)t+B-4A`

Comparing the coefficients of the like powers of t, we get

`2A=3=>A=3/2`

and

B-4A=-2

`=>B-4xx3/2=-2`

`=>B=-2+6=4`

Substituting the values of A and B, we get

`3t-2=3/2(2t-4)+4`

`:.I=int((3t-2)dt)/(t^2-4t+4)`

`=int((3/2(2t-4)+4)/(t^2-4t+4))dt`

 `=3/2int((2t-4)/(t^2-4t+4))dt+4intdt/(t^2-4t+4)`

 `=3/2I_1+4I_2 `

 Here,

`I_1=int((2t-4)dt)/(t^2-4t+4) `

Now,

`I_2=int((2t-4)dt)/(t^2-4t+4)`

Let t24t+4=p

(2t4) dt=dp

`I_1=int((2t-4)dt)/(t^2-4t+4)`

`=int(dp)/p`

 =log |p|+C1

=log |t24t+4|+C1   ......(2)

and

`I_2=intdt/(t^2-4t+4)`

`=intdt/(t-2)^2`

= ∫(t2)2 dt

`=(t-2)^(-2+1)/(-2+1)+C_2`

 `=(-1)/(t-2)+C_2 " .......(3)"`

From (1), (2) and (3), we get

`I=3/2log|t^2-4t+4|+4xx-1/(t-2)+C_1+C_2`

`=3/2log|sin^2theta-4sintheta+4|+4/(2-t)+C " (Where C=C1+C2)"`

`=3/2log|(sintheta-2^2)|+4/(2-sin theta)+C`

`=3/2xx2log|sintheta-2|+4/(2-sintheta)+C`

`=3log|2-sintheta|+4/(2-sintheta)+C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Delhi Set 1

संबंधित प्रश्न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sin x/(1+ cos x)`


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int1/(4 + 3cos^2x)dx` = ______ 


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×