Advertisements
Advertisements
प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
उत्तर
Let I = `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
`=>I=int((3sintheta-2)costheta)/(5-(1-sin^2theta)-4sintheta)d theta`
`=>I=int((3sintheta-2)costheta)/(sin^2theta-4sin theta+4)d theta`
Now, let sin θ=t.
⇒ cos θ dθ=dt
`:.I=int(3t-2)/(t^2-4t+4)`
`=>3t-2=Ad/dx(t^2-4t+4)+B`
`=>3t-2=A(2t-4)+B`
`=>3t-2=(2A)t+B-4A`
Comparing the coefficients of the like powers of t, we get
`2A=3=>A=3/2`
and
B-4A=-2
`=>B-4xx3/2=-2`
`=>B=-2+6=4`
Substituting the values of A and B, we get
`3t-2=3/2(2t-4)+4`
`:.I=int((3t-2)dt)/(t^2-4t+4)`
`=int((3/2(2t-4)+4)/(t^2-4t+4))dt`
`=3/2int((2t-4)/(t^2-4t+4))dt+4intdt/(t^2-4t+4)`
`=3/2I_1+4I_2 `
Here,
`I_1=int((2t-4)dt)/(t^2-4t+4) `
Now,
`I_2=int((2t-4)dt)/(t^2-4t+4)`
Let t2−4t+4=p
⇒(2t−4) dt=dp
`I_1=int((2t-4)dt)/(t^2-4t+4)`
`=int(dp)/p`
=log |p|+C1
=log |t2−4t+4|+C1 ......(2)
and
`I_2=intdt/(t^2-4t+4)`
`=intdt/(t-2)^2`
= ∫(t−2)−2 dt
`=(t-2)^(-2+1)/(-2+1)+C_2`
`=(-1)/(t-2)+C_2 " .......(3)"`
From (1), (2) and (3), we get
`I=3/2log|t^2-4t+4|+4xx-1/(t-2)+C_1+C_2`
`=3/2log|sin^2theta-4sintheta+4|+4/(2-t)+C " (Where C=C1+C2)"`
`=3/2log|(sintheta-2^2)|+4/(2-sin theta)+C`
`=3/2xx2log|sintheta-2|+4/(2-sintheta)+C`
`=3log|2-sintheta|+4/(2-sintheta)+C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int1/(4 + 3cos^2x)dx` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`