हिंदी

Evaluate the following integrals: ∫7x+33+2x-x2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`

योग

उत्तर

Let I  = `int (7x + 3)/sqrt(3 + 2x - x^2).dx`

Let 7x + 3 = `A[d/dx(3 + 2x - x^2)] + B`

= A(2 – 2x) + B

∴ 7x + 3 = -2Ax + (2A + B)

Comparing the coefficient of x and constant on both the sides, we get

– 2A = 7 and 2A + B = 3

∴ A = `(-7)/(2) and 2(-7/2) + "B" ` = 3

∴ B = 10

∴ 7x  + 3 = `(-7)/(2)(2 - 2x) + 10`

∴ I = `int ((-7)/(2)(2 - 2x) + 10)/sqrt(3 + 2x - x^2).dx`

= `(-7)/(2) int ((2 - 2x))/sqrt(3 + 2x - x^2).dx + 10 int(1)/sqrt(3 + 2x - x^2)x`

= `(-7)/(2)"I"_1 + 10"I"_2`

In I1, put 3 + 2x – x2 = t

∴ (2 – 2x)dx = dt

∴ I1 = `int (1)/sqrt(t)dt`

= `int t^(-1/2) dt`

= `t^(1/2)/(1/2) + c_1`

= `2sqrt(3 + 2x - x^2) + c_1`

I2 = `int (1)/sqrt(3 - (x^2 - 2x + 1) + 1).dx`

= `int (1)/sqrt((2)^2 - (x - 1)^2).dx`

= `sin^-1((x - 1)/2) + c_2`

∴ I = `-7sqrt(3 + 2x - x^2) + 10sin^-1((x - 1)/2) + c`, where c = c1 + c2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 + cot x)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/(cos x - sin x)` dx = _______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int cos^7 x  "d"x`


`int(log(logx))/x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int1/(4 + 3cos^2x)dx` = ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×