Advertisements
Advertisements
प्रश्न
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
उत्तर
f '(x) = `sqrt"x"` ....[Given]
f(x) = ∫ f '(x)
`= int sqrt"x"` dx
`= int "x"^(1/2)` dx
`= "x"^(3/2)/(3/2)` + c
∴ f(x) = `2/3 "x"^(3/2) + "c"` ...(i)
Now, f(1) = 2 ....[Given]
∴ `2/3 (1)^(3/2) + "c" = 2`
∴ c = `2 - 2/3`
∴ c = `4/3`
∴ f(x) = `2/3 "x"^(3/2) + 4/3`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Solve: dy/dx = cos(x + y)
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`