Advertisements
Advertisements
प्रश्न
Evaluate: `int "x" * "e"^"2x"` dx
उत्तर
Let I = `int "x" * "e"^"2x"` dx
`= "x" int "e"^"2x" "dx" - int["d"/"dx" ("x") int "e"^"2x" * "dx"]` dx
`= "x" * "e"^"2x"/2 - int 1 * "e"^"2x"/2` dx
`= 1/2 "xe"^"2x" - 1/2 int "e"^"2x"` dx
`= 1/2 "x e"^"2x" - 1/2 * "e"^"2x"/2` + c
∴ I = `1/4 "e"^"2x" ("2x" - 1)` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate:
`int 1/(1 + cosα . cosx)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).