Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
उत्तर
Let I = `int (1)/(cosx - sqrt(3)sinx).dx`
I = `int ((1)/(2))/(1/2.cosx - sqrt(3)/2sinx).dx`
= `(1)/(2) int (1)/( cos pi/(3). cosx - sin pi/(3).sin x)dx`
= `(1)/(2) int (1)/cos (pi/3 + x).dx`
= `(1)/(2) int sec(x + pi/3).dx`
= `(1)/(2)log|sec(x + pi/3) + tan(x + pi/3)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :`intxlogxdx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int logx/x "d"x`
`int cot^2x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int(3x^2 - 5)^2 "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).