हिंदी

Integrate the following functions w.r.t. x : ∫1cosx-3sinx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`

योग

उत्तर

Let I = `int (1)/(cosx - sqrt(3)sinx).dx`

I = `int ((1)/(2))/(1/2.cosx - sqrt(3)/2sinx).dx`

= `(1)/(2) int (1)/( cos  pi/(3). cosx  - sin  pi/(3).sin x)dx`

= `(1)/(2) int (1)/cos (pi/3 + x).dx`

= `(1)/(2) int sec(x + pi/3).dx`

= `(1)/(2)log|sec(x + pi/3) + tan(x + pi/3)| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.9 | पृष्ठ १२३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


\[\int x \sin^3 x\ dx\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int cot^2x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


Evaluate `int(3x^2 - 5)^2  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int(5x + 2)/(3x - 4) dx` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int "cosec"^4x  dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x - 1))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×