हिंदी

∫ X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \sin^3 x\ dx\]
योग

उत्तर

\[\int x \cdot \sin^3 x\ dx \]
\[ = \int x \cdot \left[ \frac{1}{4}\left( 3 \sin x - \sin 3x \right) \right] dx \left[ \sin^3 A - \frac{1}{4}\left\{ 3 \sin A - \sin \left( 3A \right) \right\} \right]\]
\[ = \frac{3}{4}\int x_I \cdot \sin_{II} \text{ x dx} - \frac{1}{4}\int x \cdot \text{ sin  3x   dx}\]
\[ = \frac{3}{4}\left[ x\int\text{ sin  x  dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin  x  dx } \right\}dx \right] - \frac{1}{4}\left[ x\int\text{ sin  3x  dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\sin 3x dx \right\}dx \right]\]
\[ = \frac{3}{4}\left[ x \left( - \cos x \right) - \int1 \cdot \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x \left( \frac{- \cos 3x}{3} \right) - \int1 \cdot \left( \frac{- \cos 3x}{3} \right)dx \right]\]
\[ = \frac{- 3x}{4} \cos x + \frac{3}{4} \sin x + \frac{x \cos 3x}{12} - \frac{\sin 3x}{36} + C\]
\[ = \frac{1}{4}\left[ - 3x \cos x + 3\sin x + \frac{x \cos 3x}{3} - \frac{\sin 3x}{9} + C \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 95 | पृष्ठ २०४

संबंधित प्रश्न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(1+ log x)^2/x`


Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (logx)^2/x dx` = ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×