Advertisements
Advertisements
प्रश्न
उत्तर
\[\int x \cdot \sin^3 x\ dx \]
\[ = \int x \cdot \left[ \frac{1}{4}\left( 3 \sin x - \sin 3x \right) \right] dx \left[ \sin^3 A - \frac{1}{4}\left\{ 3 \sin A - \sin \left( 3A \right) \right\} \right]\]
\[ = \frac{3}{4}\int x_I \cdot \sin_{II} \text{ x dx} - \frac{1}{4}\int x \cdot \text{ sin 3x dx}\]
\[ = \frac{3}{4}\left[ x\int\text{ sin x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx } \right\}dx \right] - \frac{1}{4}\left[ x\int\text{ sin 3x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\sin 3x dx \right\}dx \right]\]
\[ = \frac{3}{4}\left[ x \left( - \cos x \right) - \int1 \cdot \left( - \cos x \right)dx \right] - \frac{1}{4}\left[ x \left( \frac{- \cos 3x}{3} \right) - \int1 \cdot \left( \frac{- \cos 3x}{3} \right)dx \right]\]
\[ = \frac{- 3x}{4} \cos x + \frac{3}{4} \sin x + \frac{x \cos 3x}{12} - \frac{\sin 3x}{36} + C\]
\[ = \frac{1}{4}\left[ - 3x \cos x + 3\sin x + \frac{x \cos 3x}{3} - \frac{\sin 3x}{9} + C \right]\]
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int 1/(xsin^2(logx)) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int (logx)^2/x dx` = ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int 1/(x(x-1)) dx`