हिंदी

∫ ( X + 1 ) 2 E X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
योग

उत्तर

\[\int \left( x + 1 \right)^2_I {e_{II}^x} \text{ dx }\]
\[ = \left( x + 1 \right)^2 \int e^x dx - \int\left\{ \frac{d}{dx} \left( x + 1 \right)^2 \int e^x dx \right\}dx\]
\[ = \left( x + 1 \right)^2 \cdot e^x - \int2 \left( x + 1 \right) \cdot e^x dx\]
\[ = \left( x + 1 \right)^2 e^x - 2\int \text{ x}_I {\text{ e}_{II}^x} \text{ dx} - 2\int e^x dx\]
\[ = \left( x + 1 \right)^2 e^x - 2 \left[ x \cdot e^x - \int1 \cdot e^x \text{ dx}\right] - 2 e^x \]
\[ = \left( x + 1 \right)^2 e^x - \text{ 2x e}^x + 2 e^x - 2 e^x + C\]
\[ = \left[ \left( x + 1 \right)^2 - 2x \right] e^x + C\]
\[ = \left( x^2 + 1 \right) e^x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 96 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×