हिंदी

∫ X 2 ( X − 1 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx }\]
\[\text{Putting  x }+ 2 = t^2 \]
\[x = t^2 - 2\]
\[\text{ Diff  both  sides }\]
\[dx = 2t \text{ dt }\]
\[I = \int \frac{\left( t^2 - 2 \right)^2}{\left( t^2 - 2 - 1 \right)t}2 \text{   t dt }\]
\[ = 2\int \frac{\left( t^2 - 2 \right)^2 dt}{t^2 - 3}\]
\[ = 2\int \frac{\left( t^4 - 4 t^2 + 4 \right)}{t^2 - 3}dt\]
\[\text{Dividing numerator by denominator, we get}\]


\[ \therefore I = 2\int\left( t^2 - 1 + \frac{1}{t^2 - 3} \right)dt \]
\[ = 2\int t^2 dt - 2\int dt + 2\int\frac{dt}{t^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2\left[ \frac{t^3}{3} \right] - 2t + 2 \times \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C\]
\[ = \frac{2}{3} \left( \sqrt{x + 2} \right)^3 - 2\sqrt{x + 2} + \frac{1}{\sqrt{3}}\text{ log} \left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]
\[ = \frac{2}{3} \left( x + 2 \right)^\frac{3}{2} - 2\sqrt{x + 2} + \frac{1}{\sqrt{3}}\text{ log }\left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 4 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cot^4 x\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×