English

∫ X 2 ( X − 1 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx }\]
\[\text{Putting  x }+ 2 = t^2 \]
\[x = t^2 - 2\]
\[\text{ Diff  both  sides }\]
\[dx = 2t \text{ dt }\]
\[I = \int \frac{\left( t^2 - 2 \right)^2}{\left( t^2 - 2 - 1 \right)t}2 \text{   t dt }\]
\[ = 2\int \frac{\left( t^2 - 2 \right)^2 dt}{t^2 - 3}\]
\[ = 2\int \frac{\left( t^4 - 4 t^2 + 4 \right)}{t^2 - 3}dt\]
\[\text{Dividing numerator by denominator, we get}\]


\[ \therefore I = 2\int\left( t^2 - 1 + \frac{1}{t^2 - 3} \right)dt \]
\[ = 2\int t^2 dt - 2\int dt + 2\int\frac{dt}{t^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2\left[ \frac{t^3}{3} \right] - 2t + 2 \times \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C\]
\[ = \frac{2}{3} \left( \sqrt{x + 2} \right)^3 - 2\sqrt{x + 2} + \frac{1}{\sqrt{3}}\text{ log} \left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]
\[ = \frac{2}{3} \left( x + 2 \right)^\frac{3}{2} - 2\sqrt{x + 2} + \frac{1}{\sqrt{3}}\text{ log }\left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 4 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \sec^6 x\ dx\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×