English

∫ ( X − 1 ) 2 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int\frac{\left( x - 1 \right)^2 \text{ dx}}{x^4 + x^2 + 1}\]
\[ = \int\left( \frac{x^2 - 2x + 1}{x^4 + x^2 + 1} \right)dx\]
\[ = \int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx - \int\frac{2x \text{ dx}}{x^4 + x^2 + 1}\]
\[ = I_1 - I_2 \]
\[\text{ where , } \]
\[ I_1 = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1}\]
\[ I_2 = \int \frac{2x \text{ dx}}{x^4 + x^2 + 1}\]
\[\text{ Now,} \]
\[ I_1 = \int \left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ I_1 = \int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} + 1} \right)dx\]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} - 2 + 3}\]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2}\]
\[\text{ Putting x }- \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I_1 = \int \frac{dt}{t^2 + \left( \sqrt{3} \right)^2}\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C_1 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) + C_1 \]
\[\text{ And }\]
\[ I_2 = \int\frac{2x \text{ dx}}{x^4 + x^2 + 1}\]
\[\text{ Putting x}^2 = t\]
\[ \Rightarrow 2x \text{ dx  }= dt\]
\[ I_2 = \int \frac{dt}{t^2 + t + 1}\]
\[ = \int\frac{dt}{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\]
\[ = \int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C_2 \]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{2t + 1}{3} \right) + C_2 \]
\[ \therefore I = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) - \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 9 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×